Multi-task Feature Selection Using the Multiple Inclusion Criterion (MIC)
نویسندگان
چکیده
We address the problem of joint feature selection in multiple related classification or regression tasks. When doing feature selection with multiple tasks, usually one can “borrow strength” across these tasks to get a more sensitive criterion for deciding which features to select. We propose a novel method, the Multiple Inclusion Criterion (MIC), which modifies stepwise feature selection to more easily select features that are helpful across multiple tasks. Our approach allows each feature to be added to none, some, or all of the tasks. MIC is most beneficial for selecting a small set of predictive features from a large pool of potential features, as is common in genomic and biological datasets. Experimental results on such datasets show that MIC usually outperforms other competing multi-task learning methods not only in terms of accuracy but also by building simpler and more interpretable models.
منابع مشابه
Minimum Description Length Penalization for Group and Multi-Task Sparse Learning
We propose a framework MIC (Multiple Inclusion Criterion) for learning sparse models based on the information theoretic Minimum Description Length (MDL) principle. MIC provides an elegant way of incorporating arbitrary sparsity patterns in the feature space by using two-part MDL coding schemes. We present MIC based models for the problems of grouped feature selection (MICGROUP) and multi-task f...
متن کاملGIS-Based Multi Criteria Evaluation for Thermal Power Plant Site Selection in Kahnuj County, SE Iran
Choosing a location for a power plant site is a complex task that involves evaluation of multiple factors, which should satisfy a number of economic and environmental requirements. The main aim of this study is to determine the best possible candidates for thermal power plant sites using Multi-criteria Evaluation and Geographic Information System (GIS) in Kahnuj County in the southeast of Iran....
متن کاملA Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification
In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملAn optimization technique for vendor selection with quantity discounts using Genetic Algorithm
Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...
متن کامل